Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺⁺ by NAAC - V cycle (CGPA 3.53)

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I - VI POs, PSOs & COs

DEPARTMENT OF MATHEMATICS

2023-2026 (With effect from the academic year 2025-2026)

PEOs	Upon completion of B.Sc. degree programme, the	Mission
	graduates will be able to	addressed
PEO 1	apply appropriate theory and scientific knowledge to	M1& M2
	participate in activities that support humanity and economic	
	development nationally and globally, developing as leaders	
	in their fields of expertise.	
PEO 2	inculcate practical knowledge for developing professional	M2, M3,
	empowerment and entrepreneurship and societal services.	M4 & M5
PEO 3	pursue lifelong learning and continuous improvement of the	M3, M4,
	knowledge and skills with the highest professional and	M5 & M6
	ethical standards.	

Programme Educational Objectives (PEOs)

Programme Outcomes (POs)

POs	Upon completion of B.Sc. Degree Programme, the	PEOs
	graduates will be able to:	Addressed
PO1	obtain comprehensive knowledge and skills to pursue	PEO 1
	higher studies in the relevant field of science.	
PO2	create innovative ideas to enhance entrepreneurial skills for	PEO2
	economic independence.	
PO3	reflect upon green initiatives and take responsible steps to	PEO 2
	build a sustainable environment.	
PO4	enhance leadership qualities, team spirit and communication	PEO 1&PEO 3
	skills to face challenging competitive examinations for a	
	better developmental career.	
PO5	communicate effectively and collaborate successfully with	PEO 2&PEO 3
	peers to become competent professionals.	
PO6	absorb ethical, moral and social values in personal and	PEO 2& PEO 3
	social life leading to highly cultured and civilized	
	personality	
PO7	participate in learning activities throughout life, through	PEO1 & PEO 3
	self-paced and self-directed learning to develop knowledge	
	and skills.	

DEO	Upon completion of B.Sc. Mathematics, the graduates	Mapping
P50	will be able to:	with POs
	acquire good knowledge and understanding, to solve	PO1
PSO – 1	specific theoretical & applied problems in different area	
	of mathematics & statistics.	
	understand, formulate, develop mathematical arguments,	PO6
	logically and use quantitative models to address issues	
PSU-2	arising in social sciences, business and other context	
	/fields.	
	apply Mathematical theories and principles accurately,	PO3 &PO7
PSO - 3	precisely and effectively including higher research and	
	extensions	
	prepare the students who will demonstrate respectful	PO5 &PO6
	engagement with other's ideas, behaviors, beliefs and	
150-4	apply diverse frames of references to decisions and	
	actions	
PSO – 5	create effective entrepreneurs by enhancing their critical	PO2 &PO4
	thinking, problem solving, decision making and leadership	
	skill that will facilitate startups and high	
	potential organizations	

Programme Specific Outcomes (PSOs)

Mapping of PO'S and PSO'S

POs	PSO1	PSO 2	PSO3	PSO4	PSO5
PO 1	S	М	М	М	М
PO 2	М	М	М	М	S
PO 3	М	М	S	М	М
PO4	М	М	М	М	S
PO5	М	М	М	S	М
PO6	М	S	М	S	М
PO7	М	М	S	М	М

Strong -S (3), Medium – M (2), Low – L (1)

Course Outcomes SEMESTER I CORE COURSE I: ALGEBRA & TRIGONOMETRY Course Code : MU241CC1

On the successful completion of the course, student will be able to:			
1.	know the definitions and properties of the Remainder Theorem, equations with real and rational coefficients, and the transformations of equations	K1	
2.	find eigen values, eigen vectors, verify Cayley — Hamilton theorem and diagonalize a given matrix	K1	
3.	expand the powers and multiples of trigonometric functions in terms of sine and cosine	K2	
4.	classify and solve reciprocal equations	K2	
5.	determine relationship between circular and hyperbolic functions and the summation of trigonometric series	K3	

K1 - Remember; **K2** - Understand; **K3** - Apply

SEMESTER I

CORE COURSE II: DIFFERENTIAL CALCULUS

Course Code: MU241CC2

On the successful completion of the course, student will be able to:			
1	recall the definitions and basic concepts of Differential Calculus.	K1	
2	understand the concepts of Differentiation, Partial Differentiation, Envelope & Curvature.	K2	
3	determine Partial derivatives of a function of two variables and use Lagrange's method of undetermined multipliers.	K2	
4	distinguish between partial and ordinary differential equations.	K3	
5	find the radius of curvature using polar co-ordinates.	K3	

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER I ELECTIVE COURSE I: ALLIED MATHEMATICS-I ALGEBRA AND DIFFERENTIAL EQUATIONS

Course Code : MU231EC1

On the successful completion of the course, student will be able to:			
1	recall the methods of finding the solutions of algebraic equations, differential equations and various formulae of laplace transform		K1
2	understand the theory of algebraic equations, eigen values, differential equations and laplace transform		K2
3	simplify algebraic expressions using various methods, find eigen values, solve initial value problems for odes and find inverse laplace transform		K2
4	analyse various types of first-order odes, relate laplace transform and inverse laplace transform and formulate algebraic equations from real world problems.		K4

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze;

SEMESTER – I

NON-MAJOR ELECTIVE NME - I MATHEMATICS FOR COMPETITIVE EXAMINATIONS I Course Code : MU231NM1

On the successful completion of the course, student will be able to:				
1	understand the problems and remember the methods to solve	K1 & K2		
	problems.			
2	grasp the simplest method to solve problems.	K2		
3	apply suitable mathematical method and get solutions to simple real life	K3		
5	problems.			

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER – I FOUNDATION COURSE - BRIDGE MATHEMATICS Course Code: MU231FC1

On the successful completion of the course, student will be able to:			
1	prove the binomial theorem and apply it to find the expansions of	K2 & K3	
	any $(x + y)^n$ and also, solve the related problems.		
2	find the various sequences and series and solve the problems related	K1 &K3	
	to them. Explain the principle of counting.		
	find the number of permutations and combinations in different	K2 & K3	
3	cases. Apply the principle of counting to solve the problems on		
	permutations and combinations.		
	explain various trigonometric ratios and find them for different	K2 & K3	
4	angles, including sum of the angles, multiple and submultiple angles,		
	etc. Also, they can solve the problems using the		
	transformations.		
5	find the limit and derivative of a function at a point, the definite	K3	
	and indefinite integral of a function. Find the points of min/max of		
	a function.		

K1-RememberK2- Understand K3 - Apply

SEMESTER – I

SPECIFIC VALUE-ADDED COURSE –WEB DESIGNING USING HTML Course Code : MU231V01

On the successful completion of the course, student will be able to:			
1	define modern protocols and systems used on the web (such as HTML, HTTP)	K2	
2	employ fundamental knowledge on web designing with makeup language	К3	
3	gain strong knowledge in HTML	K2	
4	use critical thinking skills to design and implement an interactive websites with regard to issues of usability, accessibility and internationalism	K4	
5	to pursue future courses in website development and design	K3	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

SEMESTER II CORE COURSE IV: INTEGRAL CALCULUS

Course Code : MU232CC2

On the successful completion of the course, students will be able to:			
1.	determine the integrals of algebraic, trigonometric and logarithmic	K1	
	functions and to find the reduction formulae.		
2.	evaluate double and triple integrals and problems using change of order	K2	
	of integration.		
3.	solve multiple integrals and to find the areas of curved surfaces	K3	
	and volumes of solids of revolution.		
4.	explain beta and gamma function sand to use them in solving problems	K2	
	of integration.		
5.	explain Geometric and Physical applications of integral calculus.	K2	

K1 - Remember; K2 - Understand; K3 – Apply

SEMESTER – II

ELECTIVE COURSE - II: VECTOR CALCULUS AND FOURIER SERIES

Course Code : MU232EC1

On the s	On the successful completion of the course, student will be able to:		
1	remember the formulae of vector differentiation, integration and Fourier	K1	
	series		
2	understand various theorems related to vector differentiation, integration	K2	
_	and Beta, Gamma functions		
3	solve problems on vector differentiation, integration, Beta, Gamma	K3	
_	functions and Fourier series		
4	compare double and triple integrals, line, surface integrals, Beta, Gamma	K2	
-	functions and Fourier series for Even and odd functions		

K1–Remember K2 - Understand K3 - Apply

SEMESTER - II

Non-Major Elective Course II

Mathematics for Competitive Examinations II

Course Code : MU232NM1

On the successful completion of the course, student will be able to:		
1.	understand the problems and remember the methods to solve problems.	K2
2.	identify the appropriate method to solve problems.	K1
3.	apply the best mathematical method and obtain the solution in short.	K3
4.	apply fundamental mathematical concepts to calculate simple interest, compound interest	К3
5.	develop problem-solving skills and critical thinking by effectively solving real-world scenarios involving financial calculation	K2

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER – II

SKILL ENHANCEMENT COURSE -SEC-I:

INTRODUCTION TO COMPUTATIONAL MATHEMATICS

Course Code : MU232SE1

On the successful completion of the course, student will be able to:		
	gain an appreciation for the role of computers in mathematics,	K1 & K2
CO1	science, and engineering as a complement to analytical and	
	experimental approaches.	
	acquire a strong foundation in numerical analysis, enabling	K2
CO2	students to evaluate and analyze numerical solutions for	
	mathematical problems.	
CO3	use and evaluate alternative numerical methods for the solution	K3
005	of systems of equations.	
CO4	foster critical thinking skills in assessing computational methods	K3
04	for problem solving.	
CO5	apply mathematical concepts to practical problems through	K3
05	computational approaches.	

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER I & II Life Skill Training I: Catechism

Course	Upon completion of this course the students will be able to
Outcome	
CO-1	understand the aim and significance of value education
CO-2	develop individual skills and act confidently in the society
CO-3	learn how to live lovingly through family values
CO-4	enhance spiritual values through strong faith in God
CO-5	learn good behaviours through social values

SEMESTER I & II

Life Skill Training I: Moral

Course Code: UG232LM1

Course	Upon completion of this course the students will be able to
Outcome	
CO-1	understand the aim and significance of value education
CO-2	develop individual skills and act confidently in the society
CO-3	learn how to live lovingly through family values
CO-4	enhance spiritual values through strong faith in God
CO-5	learn good behaviours through social values

SEMESTER I SPECIFIC VALUE- ADDED COURSE- VEDIC ALGEBRA Course Code: MU231V02

On the successful completion of the course, students will be able to:		
1.	remember mathematical concepts and solutions using Vedic algebra terminology and notation, ensuring clarity and precision in their explanations.	K1
2.	understand the mathematical concepts and principles underlying Vedic algebra techniques, fostering a comprehensive grasp of the subject matter.	К2
3.	apply Vedic algebra techniques proficiently to solve equations and mathematical problems, demonstrating precision and accuracy.	К3
4.	analyze the applicability of Vedic algebra methods in various mathematical contexts, discerning their strengths and limitations through critical examination.	K4
5.	evaluate the effectiveness of Vedic algebra in enhancing problem-solving skills and mathematical reasoning, employing rigorous assessment criteria and methodologies.	К5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 – Evaluate

SEMESTER I SPECIFIC VALUE - ADDED COURSE - SAMPLING TECHNIQUES Course Code: MU231V03

On the s	On the successful completion of the course, students will be able to:		
1.	recall and list different sampling methods such as simple random	K1	
	sampling, systematic sampling, and stratified sampling.		
2.	understand appropriate sampling methods to create survey designs or	K2	
	experimental setups based on specific research objectives and		
	population characteristics.		
3.	apply knowledge of sampling errors to distinguish between biased and	K3	
	unbiased errors and assess their potential impact on survey outcomes.		
4.	analyse survey designs by evaluating the suitability and effectiveness of	K4	
	sampling methods.		
5.	evaluate the best sampling strategies based on understanding sampling	K5	
	principles to ensure accurate and reliable survey outcomes.		

K1– Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER III CORECOURSE V :VECTOR CALCULUS AND ITS APPLICATIONS Course Code: MU233CC1

On the successful completion of the course, students will be able to:		
1	remember the formulae of vector differentiation, integration and the	K1
	basic principles of vectors, including their properties, operations, and	
	geometric interpretations	
2	understand the concepts of divergence and curl and their applications	K2
	in physics and engineering	
3	apply Green's, Gauss', and Stokes' theorems to solve problems	K3
	involving line and surface integrals, demonstrating their	
	understanding of vector calculus principles	
4	gain proficiency in differentiating vectors and interpreting their	K4
	gradients geometrically	
5	learn how to integrate vectors to calculate work done by forces and	K5
	solve related problems	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 – Evaluate:

SEMESTER III CORECOURSE VI: DIFFERENTIAL EQUATIONS AND APPLICATIONS Course Code: MU233CC2

On the successful completion of the course, students will be able to:		
1	learn Exact differential equations and Bernoulli's equations	K1
2	learn methods of forming and solving partial differential equations	K2, K4
3	apply the concepts to solve problems in physical sciences and engineering	K3
4	solve linear differential equations with constant coefficients	K5
5	solve linear differential equations with variable coefficients	K5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III ELECTIVE COURSE III: MATHEMATICAL STATISTICS Course Code: MU233EC1

On the successful completion of the course, students will be able to:		
1	calculate and interpret correlation coefficients and regression lines, and their	K1
	applications in analyzing relationships between variables.	
2	understand Theory of Attribute in statistics, including concepts like	K2
	consistency of data, independence, and association	
3	acquire knowledge of index numbers and learn how to apply index numbers	K3
	in economic analysis	
4	learn about rank correlation and understand when and how to use them to	K4
	assess monotonic relationships between variables.	
5	develop proficiency in interpolation methods and apply these techniques to	K5
	estimate values within a set of data points with precision.	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III SKILL ENHANCEMENT COURSE SEC-II: SPHERICAL TRIGONOMETRY Course Code: MU233SE1

On the successful completion of the course, students will be able to:		
	explain the concepts great and small circles, axis and poles of great	K2
	circles	
	define spherical angle and also the angle of intersection between two	K2
	great circles	
	calculate the arc length between two points on a sphere using the	K3
	cosine rule for sides	
	distinguish between plane trigonometry and spherical trigonometry	K4

discuss and derive the spherical cosine, sine, supplemental cosine and	K5
cotangent rules	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III SPECIFIC VALUE-ADDED COURSE –BASIC FUZZY ALGEBRA Course Code: MU233V01

On the successful completion of the course, students will be able to:		
	learn fuzzy versus crisp, fuzzy sets and definition	K1
2	understand general definitions and properties of Fuzzy sets, general	K2
	properties: Fuzzy versus crisp	
3	study Extension principles of Fuzzy sets, fuzzy compliments	K2
4	learn Binary operations of two Fuzzy numbers	K2, K3
5	apply the Fuzzy logic concepts to truth values and truth table	K3

K1– Remember; K2 - Understand; K3 – Apply;

SEMESTER III SPECIFIC VALUE-ADDED COURSE –STATISTICAL SURVEY Course Code: MU233V02

On the s	On the successful completion of the course, students will be able to:		
1.	recall the main steps involved in planning a survey and identifying	K1	
	sources of primary and secondary data.		
2.	understand the purpose of survey planning, the nature of information	K2	
	required, and the importance of selecting appropriate data collection		
	techniques		
3.	apply survey planning principles to design effective surveys and select	K3	
	suitable methods for data collection		
4.	analyze survey data to identify patterns, trends, and potential sources of	K4	
	error or bias.		
5.	create comprehensive survey reports that present survey findings clearly	K6	
	and effectively, drawing conclusions and making recommendations		
	based on the analysis of the data collected		

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

SEMESTER III SPECIFIC VALUE-ADDED COURSE – DATA STRUCTURES Course Code: MU233V03

On the successful completion of the course, student will be able to:		
1	recall the definitions and properties of elementary data structures like	K1
	arrays, stacks, queues, and linked lists.	
2	explain the principles underlying these data structures and their	K2
_	applications in problem-solving.	
3	utilize appropriate data structures to represent rooted trees and	К3
	demonstrate the relationships between nodes within these structures.	
4	analyze the properties of red-black trees and their role in maintaining	K4
	balance in dynamic data structures.	
5	evaluate the efficiency and scalability of disjoint-set data structures for	K5
	solving problems involving dynamic connectivity.	

K1 – Remember; K2 – Understand; K3 – Apply; K4- Analyze; K5 – Evaluate

SEMESTER III/V

SELF LEARNING COURSE: SET/NET ALGEBRA ESSENTIALS Course Code: MU235SL1

On the successful completion of the course, students will be able to:		
1	demonstrate the ability to compute line integrals over rectifiable arcs and apply Cauchy's Theorem to evaluate integrals in various domains.	K2, K3
2	interpret and apply advanced concepts such as Jensen's Formula and Hadamard's Theorem to analyze the behavior of entire functions and infinite products.	K3, K4
3	apply the calculus of residues to evaluate definite integrals and utilize harmonic functions to solve boundary value problems using Poisson's Formula and Schwarz's Theorem.	K3, K5
4	construct power series expansions using Weierstrass's Theorem and apply partial fractions and factorization techniques to manipulate complex functions.	K3, K6
5	analyze the local properties of analytic functions, including removable singularities, zeros, poles, and the Maximum Principle.	K4

K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6– Create

SEMESTER IV CORE COURSE VII: GROUPS AND RINGS Course Code: MU234CC1

On the s	On the successful completion of the course, students will be able to:		
1	recall the definitions of groups, rings, functions and also examples of	K1	
	groups and rings		
2	explain the properties of groups, rings and different types of groups and	K2	
	rings		
3	develop proofs of results on Permutation groups, Cyclic groups, Quotient	K3	
	group, Subgroups, sub rings, quotient rings		
4	test the homomorphic and isomorphic properties of groups and rings	K4	
5	examine the properties of Ideals - Maximal and Prime ideals - Cosets -	K5	
	order of an element		

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER IV CORE COURSEVIII: ELEMENTS OF MATHEMATICAL ANALYSIS Course Code: MU234CC2

On the s	On the successful completion of the course, students will be able to:		
1	recall the basic concepts of real numbers, definitions on sequences and	K1	
	series of real numbers		
2	explain the primary concepts of sequences and series of real numbers	K2	
3	calculate limit of the sequences and determine the convergence of the		
	series by applying Cauchy's principles, root test and ratio tests	K3	
4	analyse the properties of real numbers, nature of sequences and series	K4	
5	evaluate the behavior of sequences and the convergence of series using		
	different types of tests	K5	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER IV ELECTIVE COURSE IV: TRANSFORM TECHNIQUES Course Code: MU234EC1

On the successful completion of the course, students will be able to:		
	recall basic knowledge about Laplace transforms, inverse Laplace	K1
	transforms, Fourier series, Fourier transform, and Z-transforms,	
	including their definitions, properties, and fundamental concepts.	
	demonstrate a solid understanding of the principles and concepts	K2

underlying Laplace transforms, inverse Laplace transforms, Fourier	
series, Fourier transform, and Z-transforms, including their	
applications in mathematical analysis and signal processing.	
apply Fourier sine and cosine transforms to solve difference	К3
equations.	
apply transform techniques to evaluate integrals, and solve ordinary	КЗ,
and partial differential equations with constant and variable	K4
coefficients.	
analyze and decompose periodic functions using the Fourier series,	K5
including expansion of periodic functions of period 2π , expansion of	
even and odd functions, and representation of functions over half	
intervals.	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 – Evaluate

SEMESTER IV SELF LEARNING COURSE II: ANALYSIS AND FORECASTING Course Code: MU236SL1

On the s	On the successful completion of the course, students will be able to:		
1	identify the different components of a time series, including trend,	K1	
	seasonal variations, and cyclical patterns		
2	understand the importance of time series analysis in various fields and	K2	
	how it aids in making informed decisions		
3	assessing the effectiveness and reliability of the chosen forecasting	K2	
	technique		
4	differentiate between stationary and non-stationary time series data and	K4	
	analyze autocorrelation functions		
5	evaluate forecasting procedures to predict future values of a time series	K5	
	with accuracy and reliability		

K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER V CORE COURSE IX: LINEAR ALGEBRA Course Code: MU235CC1

On the successful completion of the course, student will be able to:		
1	recall the definitions and fundamental concepts of vector spaces, subspaces,	K1
1.	linear transformations, basis, eigenvalues, inner product spaces, quadratic	
	forms, and lattices.	
2	describe the span of a set, linear independence, rank and nullity, properties of	K2
۷.	eigenvalues, and orthogonality in inner product spaces.	
2	apply the Cayley-Hamilton theorem to compute characteristic equations and	K3
5.	eigenvalues, and perform matrix transformations.	
4	analyse the orthogonal complement, bilinear forms, and quadratic form reduction	K4
4.	techniques to diagonal form.	
5	evaluate lattice structures, modular and distributive lattices, and Boolean	K5
5.	algebra for mathematical reasoning and logical deductions.	

SEMESTER V CORE COURSE X: REAL ANALYSIS Course Code : MU235CC2

Course Outcomes

	On the successful completion of the course, students will be able to:	
1	define fundamental concepts of metric spaces, including open sets,	K1
	bounded sets, open balls, subspaces, interior, closure, limit points, dense	
	sets, complete metric spaces, continuity, homeomorphism,	
	connectedness, compactness.	
2	describe the properties and relationships of closed sets, limit points,	K2
	dense sets, complete metric spaces, continuity, connectedness,	
	compactness, and their significance in metric space theory.	
3	apply the concepts of open and closed sets, continuity, homeomorphism,	
	connectedness, compactness and complete metric space to solve	K3
	problems and verify the conditions required for these properties.	
4	analyze the properties of metric spaces, continuity, connectedness,	K4
	completeness and compactness by classifying examples, comparing key	
	theorems, and interpreting their implications in mathematical problem-	
	solving.	
5	evaluate the fundamental concepts of metric spaces, continuity,	
	connectedness, completeness and compactness by analyzing key	K5
	theorems, constructing rigorous proofs, and identifying counterexamples	
	to demonstrate mathematical concepts.	

K1-Remember;K2 -Understand; K3– Apply;K4 -Analyze; K5-Evaluate

SEMESTER V CORE COURSE XI: GRAPH THEORY Course Code: MU235CC3

Course Outcomes

On the successful completion of the course, students will be able to:		
1	recall fundamental concepts, definitions, and properties of graphs, subgraphs, trees, matchings,	K1
	planarity, and colorability.	
2	explain the structural properties of graphs, including connectedness, Eulerian and Hamiltonian	K2
	graphs, trees, and chromatic characteristics.	
3	apply graph theory principles to solve problems related to connectivity, matchings, planar	K3
	graphs, and chromatic polynomials.	
4	analyze the characteristics of different types of graphs, identify structural properties, and	K4
	examine their applications in real-world problems.	
5	evaluate various graph properties, justify theoretical results such as Euler's formula and the five-	K5
	color theorem, and assess different graph algorithms.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 – Evaluate.

SEMESTER V

CORE RESEARCH PROJECT

Course Code: MU235RP1

Course Outcomes

On	the successful completion of the course, students will be able to:	
1	apply mathematical concepts and theories to formulate and analyze real-world problems through project-based learning.	K1
2	demonstrate the ability to conduct literature reviews, identify research gaps, and select appropriate mathematical tools for investigation.	K2
3	develop skills in mathematical modeling, computation, or theoretical analysis to solve complex problems.	К3
4	communicate mathematical ideas effectively through written reports, presentations, and visual aids using appropriate mathematical language.	K4
5	exhibit independent thinking, teamwork, time management, and ethical responsibility during the process of completing the project work.	K5

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE I: a) NUMERICAL METHODS Course Code: MU235DE1 Course Outcomes

On the successful completion of the course, student will be able to:			
	1	recall the fundamental concepts of numerical methods, including iteration	K1
		techniques, finite differences, and interpolation formulas.	
	2	describe the application of Newton's Interpolation and divided difference	K2
		methods in data approximation.	
	3	compute numerical differentiation and integration using Newton's forward,	K3
		backward, and central difference formulas, as well as quadrature rules.	
	4	examine different numerical techniques, including Taylor's series, Picard's,	K4

	Euler's, and Runge-Kutta methods, for solving differential equations.	
5	compare the accuracy and efficiency of various numerical methods for solving	K5
	algebraic, transcendental, and differential equations.	

K1 - Remember; K2 - Understand; K3– Apply; K4-Analysis; K5-Evaluate

SEMESTER V

DISCIPLINE SPECIFIC ELECTIVE I: b) FUZZY MATHEMATICS Course Code: MU235DE2

Course Outcomes

On the successful completion of the course, student will be able to:		
1	recall the basic concepts of crisp sets and fuzzy sets, including their differences,	K1
	properties, and fundamental operations, the types of fuzzy numbers ,truth tables,	
	logical connectives.	
2	explain the various types of fuzzy sets and the significance of operations	K2
	performed on them and Describe the process of performing fuzzy arithmetic	
	and operations on fuzzy numbers	
3	solve problems involving basic operations on fuzzy sets such as union,	K3
	intersection, and complement and to model complex systems such as clustering	
	or decision-making.	
4	analyze the role of fuzzy relations in real-world applications like database	K4
	management, pattern recognition, and fuzzy systems.compare and contrast the	
	properties of operations on fuzzy sets with those on crisp sets	
5	assess the practical application of fuzzy sets in real-world problems such as	K5
	control systems or decision-making processes and the effectiveness and	
	limitations of fuzzy systems in real-world applications such as data mining,	
	optimization, and adaptive systems.	

K1 - Remember; K2 - Understand; K3 – Apply; K4-Analysis; K5-Evaluate

SEMESTER V

DISCIPLINE SPECIFIC ELECTIVE I: c) THEORYOF NUMBERS Course Code: MU235DE3

Course Outcomes

O	On the successful completion of the course, students will be able to:		
1	recall fundamental concepts of divisibility theory, Diophantine equations, the basic	K1	
	properties of congruences, Fermat's Theorem, and Fibonacci numbers to		
	efficiently solve problems in number theory.		
2	explain the division algorithm, the distribution of prime numbers, the theory of	K2	
	congruences, pseudo primes, absolute pseudo primes, the properties of Fibonacci		
	numbers, and the Fibonacci sequence.		
3	apply the greatest common divisor, the Euclidean algorithm, the Fundamental	K3	
	Theorem of Arithmetic including linear congruences and the Chinese Remainder		
	Theorem, Wilson's Theorem Fibonacci numbers and sequences in solving		
	mathematical and computational problems and applications.		
4	explore the Euclidean algorithm to identify patterns and relationships in integers,	K4	
	the structure of Diophantine equations, investigate the properties of congruences,		
	critically assess Fermat's Theorem, and analyze the Fibonacci sequence and its		

	mathematical properties to identify patterns and relationships in number theory and real-world applications.	
5	evaluate the Euclidean algorithm in solving integer-related problems, the significance of Diophantine equations, judge the applicability of congruences, compare and validate the use of Fermat's Theorem, and Fermat's Little Theorem, critically evaluate the properties of Fibonacci numbers and sequences, and justify their applications in mathematical and computational contexts	К5

SEMESTER V

DISCIPLINE SPECIFIC ELECTIVE II: a) COMBINATORIAL MATHEMATICS Course Code: MU235DE4

Course Outcomes

On the successful completion of the course, students will be able to:		
1	recall fundamental principles of permutations, combinations, principle of inclusion-exclusion,	K1
	recurrence relations, generating functions and polya's theory of counting	
2	explain concepts such as restricted permutations, circular permutations, combinations, principle	K2
	of inclusion-exclusion, recurrence relations, significance of generating functions and the	
	equivalence classes under a permutation group	
3	solve counting problems, including mixed problems on permutation and combinations,	K3
	inclusion-exclusion, recurrence relations, generating functions, polya's theory of countingand	
	applications of the rook polynomial.	
4	interpretcomplex combinatorial problems by identifying appropriate methods such as	K4
	characteristic roots for recurrence relations, generating functions in counting problems,	
	equivalence classes under a permutation group and principle of inclusion and exclusion	
5	develop proficiency in mathematical proofs using combinatorial arguments, including induction	K5
	and bijective proofs.	

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE II: b) DISCRETE MATHEMATICS Course Code: MU235DE5

On the suc	On the successful completion of the course, student will be able to:		
1	recall the fundamental concepts in propositions, truth tables, Boolean operations, logic gates and lattices	K1	
2	explain methods of proofs, logical equivalence, predicate logic and the working of logic circuits	K2	
3	apply techniques like mathematical induction, De Morgan's theorem and Boolean function in problem solving	K3	
4	analyze compound propositions, logical statements, fallacies, canonical forms and the structure of partially ordered sets	K4	
5	evaluate logical arguments, proof strategies, lattice operations and finite Boolean algebras	K5	

K1 – Remember K2 - Understand K3 - Apply K4 – AnalyseK5 – Evaluate K6 - Create

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE II: c) AUTOMATA THEORY Course Code: MU235DE6 Course Outcomes

On	On the successful completion of the course, students will be able to:		
1	acquire the knowledge in mathematical notions of computation, such	K1	
	as computability, decidability and reducibility of the theory		
	of formal languages and automata.		
2	perceive the techniques of computations including finite state	K2	
	automata, grammars and regular expressions and their relations		
3	design and explain finite state automata, context free grammars,	К3	
	derivation trees.		
4	apply mathematical foundations, algorithmic principles and	K4	
	computer science theory to the modelling and design of computer		
	based systems in a way that demonstrates.		
5	evaluate different computational models using combinatorial	K5	
	methods.		

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

SEMESTER VI CORE COURSE XII: COMPLEX ANALYSIS Course Code: MU236CC1

Course Outcomes		
On the	successful completion of the course, students will be able to:	
1	recall and understand the fundamental concepts and results, describe	K1,
	transformations and summarize Taylor's and Laurent's series, singularities.	K2
2	compute limits, continuity, and differentiability, determine analyticity using C.R	
	equations, apply transformations to map functions, evaluate complex integrals using	K3
	Cauchy's theorem, integral formula and residues.	
3	analyze the conditions for a function to be analytic or harmonic, conformal, compare	
	different types of singularities, examine the properties of transformations along with	K4
	their geometric interpretations, and investigate various cases of Cauchy's residue	М4
	theorem.	
4	evaluate definite integrals using contour integration techniques and justify the use	V5
	of Taylor's and Laurent's series for function expansion.	КJ
5	construct analytic functions that satisfy given boundary conditions and design	VC
	contour integration methods for evaluating definite integrals.	N0

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6– Create

SEMESTER VI CORE COURSE XIII: MECHANICS

Course Code: MU236CC2

Course Outcomes

On the successful completion of the course, students will be able to:		
1 re	call fundamental concepts related to forces, moments, couples, friction, projectiles,	K1

	and motion under central forces.	
2	explain the principles governing equilibrium, force systems, friction, projectile	K2
	motion, and central orbits.	
3	apply the concepts of forces, friction, projectiles, and central motion to solve real-	K3
5	world problems.	
1	analyze various mechanical systems involving forces, equilibrium, motion, and central	K4
4	orbits.	
5	evaluate and justify the mathematical formulations and physical interpretations of	K5
5	forces, motion, and mechanical principles.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

SEMESTER VI

CORE COURSE XIV: THEORY OF CELESTIAL SPHERE AND INDIAN MATHEMATICS Course Code: MU236CC3

Course Outcomes

On the successful completion of the course, students will be able to:		
1	recall fundamental concepts of the spherical trigonometry of the celestial sphere, zones of the	K1
	Earth, Geometry, Combinations, and series.	
2	explain the Celestial sphere, Dateline, Duration of Twilight, the method of false assumption in	K2
	Egyptian mathematics, and Gross estimation of plane figures.	
3	apply concepts such as hour angle, azimuth at rising, terrestrial latitude and longitude, and	K3
	astronomical refraction to determine celestial positions accurately. It is also important to	
	apply methods for finding unknowns from sums and differences and for constructing	
	rational triangles whose sides differ by unity in solving geometric problems related to	
	celestial observations.	
4	explore the Four systems of coordinates, the Dip of Horizon General effects of refraction, and	K4
	the geometry of quadrilaterals.	
5	evaluate the Diurnal motion and sidereal Time, Cassini's Formula, the Pythagorean theorem,	K5
	and Constructing 4 x 4 pan-diagonal magic squares.	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVE III: a) DATA STRUCTURES Course Code: MU236DE1

Course Outcomes

On the successful completion of the course, students will be able to:			
1	recall fundamental concepts of data structures, including arrays, strings, pointers,	K1	
	structures, linked lists, stacks, queues, and trees, along with their basic operations,		
	representations, and applications.		
2	explain the fundamental concepts of data structures, including arrays, strings,	K2	
	pointers, structures, linked lists, stacks, queues, and trees, and demonstrate their		
	operations, implementations, and applications.		
3	apply appropriate data structures such as arrays, strings, pointers, linked lists,		
	stacks, queues, and trees to solve computational problems.	K3	
4	analyze various data structures, including arrays, pointers, linked lists, stacks,		
	queues, and trees, to differentiate their characteristics and evaluate their efficiency	K4	
	in problem-solving.		

5	evaluate the efficiency of various data structures, including arrays, pointers, linked	
	lists, stacks, queues, and trees, by applying appropriate algorithms and justifying	K5
	their suitability for different computational problems.	

K1-Remember; K2 - Understand; K3– Apply; K4 - Analyze; K5-Evaluate;

SEMESTER VI

DISCIPLINE SPECIFIC ELECTIVE III: b) FUNDAMENTALS OF PYTHON PROGRAMMING Course Code: MU236DE2

Course Outcomes

On the successful completion of the course, students will be able to:		
1	explain the fundamental concepts of variables, data types, lists, tuples, dictionaries, conditional statements, loops, and functions in Python.	K1, K2
2	implement Python programs using variables, lists, tuples, dictionaries, conditional statements, loops, and functions to solve basic computational problems.	К3
3	examine and differentiate various data structures, control flow mechanisms, and function implementations to optimize Python code efficiency.	K4
4	assess the correctness, readability, and efficiency of Python programs by analyzing data handling in lists, tuples, and dictionaries, debugging control flow in conditional and looping structures, and promoting structured design and code reusability in function development.	К5
5	develop well-structured Python programs that integrate different programming constructs, such as functions, loops, and data structures, to solve real-world problems effectively.	K6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

SEMESTER VI

DISCIPLINE SPECIFIC ELECTIVE III: c) OBJECT ORIENTED PROGRAMMING WITH C++ Course Code: MU235DE3

Course Outcomes		
On the successful completion of the course, students will be able to:		
1	define and differentiate between fundamental OOP concepts such as classes, objects, inheritance, polymorphism, encapsulation, and abstraction.	K2
2	design and implement C++ programs using classes and objects, including defining member functions, attributes, and constructors/destructors.	K3
3	understand and apply inheritance (single, multiple, hierarchical) and polymorphism (function overloading, operator overloading, virtual functions) to create reusable and flexible code.	K4
4	implement exception handling mechanisms in C++ to ensure robust and reliable programs that can gracefully recover from errors.	K5
5	apply their knowledge of object-oriented programming to design and implement solutions for real-world problems, demonstrating the practical application of the concepts learned.	K6

K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVE IV: a) LINEAR PROGRAMMING Course Code: MU236DE4

Course Outcomes

On the successful completion of the course, students will be able to:			
1	recall the fundamental principles, mathematical formulations, and solution methods of	K2	
	LPP, Duality, Transportation, Assignment, and Job Sequencing problems.		
2	understand the theoretical concepts, problem structures, and computational techniques		
	of LPP, Duality, Transportation, Assignment, and Job Sequencing problems for	K3	
	optimization analysis		
3	apply appropriate optimization techniques, duality concepts, and solution approaches		
	to solve real-world problems related to LPP, Transportation, Assignment, and Job	K4	
	Sequencing		
4	analyze different optimization methods, duality strategies, and problem-solving	V5	
	techniques to assess their efficiency, feasibility, and relevance in decision-making.	V2	
5	evaluate various optimization models and solution methodologies in LPP, Duality,		
	Transportation, Assignment, and Job Sequencing to determine their effectiveness in	K6	
	achieving optimal solutions		

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 - Create

SEMESTER VI

DISCIPLINE SPECIFIC ELECTIVE IV: b) RESOURCE MANAGEMENT TECHNIQUES Course Code: MU236DE5

Course Outcomes

On the successful completion of the course, student will be able to:			
1	define fundamental concepts of sequencing problems, PERT & CPM, game theory and	K1	
	inventory models.	N1	
2	explain the principles of sequencing, project scheduling, game theory strategies and	K2	
	inventory models with real-world applications.	K2	
3	apply appropriate techniques to solve sequencing problems, network scheduling, game	K3	
	theory scenarios and inventory-related calculations.	КJ	
4	analyze the effectiveness of different sequencing rules, scheduling methods, game strategies	KA	
	and inventory models for optimal decision-making.	N 4	
5	evaluate complex problems in sequencing, project management, game theory and inventory	W5	
	control to determine the most efficient strategies.	ИЭ	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate

SEMESTER VI

DISCIPLINE SPECIFIC ELECTIVE IV: c) PROBABILITY THEORY AND DISTRIBUTIONS Course Code: MU236DE6

Course Outcomes

On the successful completion of the course, students will be able to:		
1	recall and state fundamental concepts of central tendencies, probability, random variables, probability distributions, and statistical functions, list the properties and characteristics of Binomial, Poisson, and Normal distributions.	K1

2	explain the significance of partition values, measures of dispersion, moments, skewness, and kurtosis, interpret probability concepts, random variables, and probability distributions in various contexts.	K2
3	solve problems related to statistical measures, probability, and probability distributions, use probability distribution, moment-generating functions, and characteristic functions in real-world scenarios.	К3
4	examine the relationships between different statistical measures and probability distributions, compare and contrast various probability models and their impact on data interpretation.	K4
5	assess the appropriateness of statistical techniques and probability models for different datasets, critically evaluate statistical conclusions and validate theoretical results with real-world applications.	K5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6– Create

SEMESTER VI PROFESSIONAL COMPETENCY SKILL II: MATH FOUNDATIONS AND AI TOOLS Course Code: MU236PS1

Course Outcomes		
On the su	ccessful completion of the course, students will be able to:	
1	demonstrate proficiency in mathematical concepts and computational techniques, applying them to solve complex problems effectively.	K1
2	improve speed and accuracy in problem solving under time constraints typically found in competitive programming environments.	K2
3	learn common abbreviations and terminology used in the field of Computer Science and Information Technology	K2
4	develop their analytical thinking and problem-solving abilities, preparing them for success in competitive programming contests and technical interviews.	К3
5	master key mathematical concepts, including Discrete Mathematics, Number Theory, and Combinatorics.	K4

K1 – Remember; K2 - Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate